Finite volume Kolmogorov-Johnson-Mehl-Avrami theory.

نویسندگان

  • Bernd A Berg
  • Santosh Dubey
چکیده

We study the Kolmogorov-Johnson-Mehl-Avrami theory of phase conversion in finite volumes. For the conversion time we find the relationship tau(con)=tau(nu)[1+f(d)(q)]. Here d is the space dimension, tau(nu) the nucleation time in the volume V, and f(d)(q) a scaling function. Its dimensionless argument is q=tau(ex)/tau(nu), where tau(ex) is an expansion time, defined to be proportional to the diameter of the volume divided by expansion speed. We calculate f(d)(q) in one, two, and three dimensions. The often considered limits of phase conversion via either nucleation or spinodal decomposition are found to be volume-size dependent concepts, governed by simple power laws for f(d)(q).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond the constraints underlying Kolmogorov-Johnson-Mehl-Avrami theory related to the growth laws.

The theory of Kolmogorov-Johnson-Mehl-Avrami for phase transition kinetics is subjected to severe limitations concerning the functional form of the growth law. This paper is devoted to sidestepping this drawback through the use of the correlation function approach. Moreover, we put forward an easy-to-handle formula, written in terms of the experimentally accessible actual extended volume fracti...

متن کامل

Nucleation and growth in one dimension. I. The generalized Kolmogorov-Johnson-Mehl-Avrami model.

Motivated by a recent application of the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model to the study of DNA replication, we consider the one-dimensional (1D) version of this model. We generalize previous work to the case where the nucleation rate is an arbitrary function I (t) and obtain analytical results for the time-dependent distributions of various quantities (such as the island distribution)...

متن کامل

Direct numerical simulation of homogeneous nucleation and growth in a phase-field model using cell dynamics method.

The homogeneous nucleation and growth in a simplest two-dimensional phase field model is numerically studied using the cell dynamics method. The whole process from nucleation to growth is simulated and is shown to follow closely the Kolmogorov-Johnson-Mehl-Avrami (KJMA) scenario of phase transformation. Specifically the time evolution of the volume fraction of new stable phase is found to follo...

متن کامل

Cell size distribution in a random tessellation of space governed by the Kolmogorov-Johnson-Mehl-Avrami model: Grain size distribution in crystallization

The space subdivision in cells resulting from a process of random nucleation and growth is a subject of interest in many scientific fields. In this paper, we deduce the expected value and variance of these distributions while assuming that the space subdivision process is in accordance with the premises of the KolmogorovJohnson-Mehl-Avrami model. We have not imposed restrictions on the time dep...

متن کامل

Cell Dynamics Simulation of Kolmogorov-Johnson-Mehl-Avrami Kinetics of Phase Transformation

In this study, we use the cell dynamics method to test the validity of the Kormogorov-JohnsonMehl-Avrami (KJMA) theory of phase transformation. This cell dynamics method is similar to the well-known phase-field model, but it is a more simple and efficient numerical method for studying various scenarios of phase transformation in a unified manner. We find that the cell dynamics method reproduces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 100 16  شماره 

صفحات  -

تاریخ انتشار 2008